

Reg. No. :	
------------	--

Name :

Fourth Semester B.Tech. Degree Examination, May 2014 (2008 Scheme)

08.402 : DIGITAL ELECTRONICS AND LOGIC DESIGN (E)

Time: 3 Hours

beauty by both Max. Marks: 100

PART-A

Answer all questions. Each question carries four marks.

- 1. What do you mean by self -complimenting code? Give example.
- 2. Realize a 3 input NAND and NOR using respective 2 input gates.
- 3. State De-Morgan's theorem and explain.
- 4. Discuss the difference between combinational and sequential logic circuits.
- 5. Realize the function , $f = \sum (0, 3, 5, 6)$ using a 4 to 1 multiplexer.
- 6. What do you mean by purity bit? Draw the circuit of a 4 bit parity bit generator.
- 7. What are the triggering methods of flip-flop? Explain.
- 8. Express the given function, $f = (xy + x\overline{z} + yz)$ in standard SOP form.
- 9. Draw and explain Johnson's counter.
- Which are the different types of memories? Give one application to each type.
 (10×4=40)

Educardo latintago do policiago y PART - Bone was Constitue inter-

Answer any one question from each Module:

with the conguest short price Module - 1

- 11. Perform the following conversion:
 - i) 1762.468 to Hexadecimal
 - ii) A08F.EA₁₆ to Decimal

	iii)	158.7 ₁₀ to BCD code	
	iv)	256.39 to XS-3	
	V)	1101101 ₂ to Gray.	20
		LAMOZ I DIGITAL ELECTRONICS AND LORO. DESIGN (E)	
12.	a)	Explain weighted and unweighted codes.	5
	b)	Simplify the following Boolean function using K-map in POS form and realize the function using NOR gates only.	15
		$F = (A, B, C, D) = A\overline{B}C + \overline{B}\overline{C}\overline{D} + BCD + AC\overline{D} + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}D.$	
		Module – 2	
13.	a)	Describe the working of a full adder. Design and draw full adder using 2 half adders and an OR gate.	10
	b)	Draw and explain a 4-bit magnitude comparator.	10
		veruse the difference between combinational and seq. 90 tiet topic circuits:	
14.	a)	Give the internal circuit circuitry of CMOS NAND gate and explain its all conditions of operation.	10
	b)	Design and explain BCD to 7 segment decoder.	10
		Module – 3	
15.	a)	Explain Race-around condition of J-K Flip. Draw the circuit of Master-slave	
		flip-flop and explain its working.	10
	b)	Design and draw the circuit of a 3-bit synchronous up counter.	10
		OR	
16.	a)	Classify shift register. Draw and explain the operation of a parallel in-serial out shift register.	10
	b)	Design an astable multivibrator using 555 having 1 kHz frequency and duty cycle of 0.6. Draw the circuit diagram.	10
		i nuerevnos gareello) sitti (3×20=	60)